
ABSTRACT: A comprehensive analysis of all publicly available 
data and reports was conducted to evaluate impact to 
Underground Sources of Drinking Water (USDWs) as a result 
of acid stimulation and hydraulic fracturing in the Pavillion, WY, =:
Field. Although injection of stimulation fluids into USDWs in the - 
Pavillion Field was documented by EPA, potential impact to 
USDWs at the depths of stimulation as a result of this activity 1 
was not previously evaluated. Concentrations of major ions in 
produced water samples outside expected levels in the Wind 
River Formation, leakoff of stimulation fluids into formation 
media, and likely loss of zonal isolation during stimulation at 
several production wells, indicates that impact to USDWs has 
occurred. Detection of organic compounds used for well 
stimulation in samples from two monitoring wells installed by 
EPA, plus anomalies in major ion concentrations in water from one of these monitoring wells, provide additional evidence of 
impact to USDWs and indicate upward solute migration to depths of current groundwater use. Detections of diesel range 
organics and other organic compounds in domestic wells <600 m from unlined pits used prior to the mid-1990s to dispose 
diesel-fuel based drilling mud and production fluids suggest impact to domestic wells as a result of legacy pit disposal practices.
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■ INTRODUCTION allowing injection of stimulation fluids into USDWs. However, 
under Section 1431 of the SDWA, the Administrator of EPA 
may take action if impact to a USDW “may present an 
imminent and substantial endangerment to the health of 
persons.”

The term “usable water” applies to lands containing federal 
or tribal mineral rights regulated by the Bureau of Land 
Management (BLM). This term is applicable to the Pavillion 
Field because tribal mineral rights are associated with more 
than half of production wells there. In the BLM Onshore Oil 
and Gas Order No. 2, usable water is defined as water 
containing <10 000 mg/L total dissolved solids (TDS) — a 
definition maintained in the March 2015 BLM rule on 
hydraulic fracturing (43 CFR 3160). In 43 CFR 3160, BLM 
retained a threshold for groundwater protection at 10 000 
mg/L stating, “Given the increasing scarcity and technological 
improvements in water treatment, it is not unreasonable to 
assume aquifers with TDS levels above 5000 ppm are usable 
now or will be usable in the future.” However, on September 
30, 2015, the U.S. District Court for Wyoming granted a

Between 2005 and 2013, natural gas production in the U.S. 
increased by 35% largely due to unconventional gas production 
in shale and tight gas formations.1 Between 2013 and 2040, 
natural gas production is expected to increase another 45% with 
production from tight gas formations in particular increasing 
from 4.4 to 7.0 trillion cubic feet (59%) primarily in the Gulf 
Coast and Dakotas/Rocky Mountain regions.1 Tight gas 
formations already account for 26% of total natural gas 
production in the United States today.2

In the U.S. Code of Federal Regulations (CFR), there are 
two federal regulations for protecting groundwater resources 
for present and future use relevant to oil and gas extraction — 
“Underground Source of Drinking Water” (USDW) and 
“usable water.” A USDW is defined in 40 CFR 144.3 in 
requirements for the Underground Injection Control program 
promulgated under Part C of the Safe Drinking Water Act 
(SDWA) as “an aquifer or its portion: (a)(1) Which supplies 
any public water system; or (2) Which contains a sufficient 
quantity of ground water to supply a public water system; and 
(i) Currently supplies drinking water for human consumption; 
or (ii) Contains fewer than 10 000 mg/L total dissolved solids; 
and (b) Which is not an exempted aquifer.” With the exception 
of use of diesel fuels, the Energy Policy Act of 2005 (“EPAct”) 
exempted hydraulic fracturing from the SDWA, thereby
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preliminary injunction filed by the States of Wyoming and 
Colorado to stop implementation of the BLM rule based on the 
assertion that the EPAct precludes BLM rulemaking.3

In 2004, EPA4 documented the widespread use of hydraulic 
fracturing in USDWs colocated in formations used for coal bed 
methane (CBM) recovery. EPA4 acknowledged likely ground­
water contamination as a result of this activity but stated that 
the attenuation factors of dilution, adsorption, and biode­
gradation would reduce contaminant concentrations to safe 
levels prior to reaching domestic wells that are generally 
shallower than production wells. Thus, EPA4 distinguished 
impact to USDWs from impact to domestic wells. In 2014, 
while defining the chemical abstract numbers of fluids 
designated as diesel fuels, EPA revised its position and stated 
that injecting stimulation fluids directly into USDWs “presents 
an immediate risk to public health because it can directly 
degrade groundwater, especially if the injected fluids do not 
benefit from any natural attenuation from contact with soil, as 
they might during movement through an aquifer or separating 
stratum.”5

The Pavillion Field (Figure 1) is located east of the Town of 
Pavillion in Fremont County, WY, in the west-central portion

domestic wells as is common in oil- and gas-field-based 
investigations.

EPA conducted two domestic well sampling events in March 
2009 (Phase I)6 and January 2010 (Phase II).8 Between June 
and September 2010, EPA installed two monitoring wells, 
MW01 and MW02, using mud rotary drilling with screened 
intervals at 233—239 m and 296—302 m below ground surface 
(bgs), respectively. These monitoring wells were installed to 
evaluate potential upward solute transport of compounds 
associated with well stimulation to maximum depths of current 
groundwater use (~322 m).9 EPA sampled MW01 and MW02 
during the Phase III (October 2010) and Phase IV (April 2011) 
sampling events.

In December 2011, EPA9 released a draft report summarizing 
results of the Phase I—IV sampling events. EPA documented 
groundwater contamination in surficial Quaternary uncon­
solidated alluvium attributable to numerous unlined pits used 
for disposal of diesel-oil-based (invert) drilling mud and 
production fluids including flowback, condensate, and 
produced water prior to the mid-1990s. EPA9 also documented 
injection of stimulation fluids into USDWs and concluded that 
inorganic and organic geochemical anomalies at MW01 and 
MW02 appeared to be attributable to production well 
stimulation. EPA received numerous comments both challeng­
ing and supporting its findings in the draft EPA report. 
reviewed and considered these comments when preparing this 
manuscript.

A substantial amount of data has been collected since 
publication of the 2011 draft EPA report, adding to an already 
extensive data set. In April 2012 (Phase V) the EPA 
samples with the U.S. Geological Survey at MW01 
MW02.42 In 2014, the Wyoming Oil and Gas Conservation 
Commission (WOGCC) released a report on production well 
integrity43 and in 2015 released a report on surface pits.44 In 
December 2015, the Wyoming Department of Environmental 
Quality (WDEQ) released a report on sample results of a 
subset of domestic wells previously sampled by EPA.

We conducted a comprehensive analysis of all publicly 
available online data and reports, to evaluate impact to USDWs 
and usable water as a result of acid stimulation and hydraulic 
fracturing. Although injection of stimulation fluids into USDWs 
in the Pavillion Field was previously documented by EPA,9 the 
potential impact to USDWs at depths of stimulation was not 
assessed. We evaluate potential upward migration of con­
taminants to depths of current groundwater use using data from 
MW01 and MW02. We also evaluate potential impact to 
domestic wells as a result of legacy disposal of production and 
drilling fluids in unlined pits.
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Figure 1. Central portion of the Pavillion Field illustrating locations of 
domestic water wells, production wells, plugged and abandoned 
(P&A) wells, and EPA monitoring wells (labeled). The entire Field, 
with labels for production and domestic wells and approximate 
locations of unlined pits, is illustrated in Figure SI A5. The geographic 
area in which the Field is located is illustrated in Figure SI A1.

of the Wind River Basin (WRB) (Figure SI A1). The field 
consists of 181 production wells including plugged and 
abandoned wells. Conventional and unconventional (tight 
gas) hydrocarbon production in the Pavillion Field is primarily 
natural gas from sandstone units in the Paleocene Fort Union 
and overlying Early Eocene Wind River Formations. However, 
oil has also been produced from production wells in these 
formations, primarily in the western portion of the field close to 
the suspected location of a fault (SI Sections A.1 and A.2).

In response to complaints regarding foul taste and odor in 
water from domestic wells within the Pavillion Field, EPA 
initiated a groundwater investigation in September 2008 under 
the Comprehensive Environmental Response and Liability Act 
(CERCLA).6 This investigation remains the only one in which 
CERCLA has been invoked to investigate potential ground­
water contamination due to hydraulic fracturing.7 Under 
CERCLA, impact to both groundwater resources and domestic 
wells is evaluated, in contrast to limiting evaluation to impact to

■ MATERIALS AND METHODS
Sources of EPA reports, versions of the Quality Assurance 
Project Plan (QAPP), and Audits of Data Quality (ADQs) are 
provided in Table SI H1. Sources of analytical data and 
associated information on quality assurance and control are 
summarized in Table SI H2. ADQs were conducted by EPA for 
Phase I—IV investigations to verify the quality of analytical data 
and consistency with requirements specified in the QAPP.

In response to a comprehensive information request by EPA 
regarding oil and gas production and disposal activities in the 
Pavillion Field, the field operator, Encana Oil & Gas (U.S.) Inc., 
provided Material Safety and Data Sheets (MSDSs) of products 
used for well stimulation to EPA46 (Table SI C3). During the 
Phase V sampling event, EPA developed a gas chromatography-
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Table 1. Summary of Major Ion Concentrations of Domestic Wells in the Wind River Indian Reservation (WRIR), Fremont 
County, WY, and within and around the Pavillion Field

WRIR b within and around Pavillion FieldFremont County

parameter (mg/L) 

TDS

median median medianrange 

211—5110
1— 486 
0.1 — 195 
5—1500 
0.2—30
2— 3250 
2—466 
0.1—8.8

With the exception of potassium, from Daddow.48 Information on potassium extracted from Daddow.53 bFrom Plafcan et al.51 There is overlap of 
19 sample results with Daddow.48,53 cMajor ion concentrations in domestic wells6,8,9,39,45,52 summarized in Table SI B2. Mean values used for 
domestic wells sampled more than once. nNumber of sample results. f TDS for EPA data estimated using linear regression equation from Daddow48 
TDS (mg/L) = 0.785 X specific conductance (^s/cm) — 130 (n = 151, r2 = 0.979)

n n range n range
f f f65154 490 77 1030 248—5100

1.7—380
0.095—99
4.5—1500
0.1—30
12—3300
3—420
0.2—4.9

925 229 —4901
3.32—452
0.024—147
38.0— 1290 
0.179—10.5
29.0— 3640 
2.60—77.6 
0.20—4.1

Ca 149 10 77 45 48 50.8
Mg 128 2.2 77 8.2 45 5.32

260Na 153 150 77 285 72
1.36K 149 2.0 77 2.45 43

SO 154 201 77 510 88 5904

Cl 154 14 77 20 48 21.1
76 46F 154 0.7 0.9 0.88

a

water originated from the surrounding formation (SI Section 
E.2, Figure SI E5). A discussion of monitoring well 
construction, including schematics for MW01 (Figure SI E1) 
and MW02 (Figure SI E2), is provided in SI Section E.1.

flame ionization-based approach to obtain a lower reporting 
limit (50 jMg/L) for methanol compared to commercial 
laboratory analysis (5000 ^g/L). We obtained this data set as 
the result of a Freedom of Information Act request to EPA.

We reviewed over 1000 publicly available well completion 
reports, sundry notices, drilling reports, and cement bond and 
variable density logs accessed from the WOGCC Internet site 
using API search numbers to determine dates of well 
completion, depths of surface casing, top of original or primary 
cement, and numbers and depths of cement squeeze jobs 
(injection of cement through perforated production casing to 
remediate or extend existing primary cement). Similarly, we 
reviewed online information to document well stimulation 
practices summarized in Tables SI C1 and SI C2.

The field operator analyzed major ions in produced water 
samples at 42 production wells in 2007 (Table SI D1). EPA 
collected produced water samples at four production wells in 
2010 and analyzed them for organic compounds (Table SI 
D3).8 The field operator also conducted mechanical integrity 
and bradenhead (annular space between production and 
surface casing) testing between November 2011 and December 
2012. In addition to sustained casing pressure at many 
production wells during that period (Table SI D2), water 
flowed through the bradenhead valve to the surface at four 
production wells (SI Section D.3). Aqueous analysis of 
bradenhead water samples by the field operator was limited 
to major ions (Table SI D1). Production well string and 
brandenhead gas samples were collected for benzene, toluene, 
ethylbenzene, xylenes (BTEX) and light hydrocarbons (Table 
SI D2).

To evaluate the effect of purging volume on water quality, 
EPA collected ten samples through time (Table SI 3a) during 
the Phase V sampling event at MW01. Based on EPA's purging 
procedure, we developed a model incorporating plug flow in 
casing and mixing in the screened interval (SI Section E.3, 
Figure SI E4). Our simulations indicated that virtually all 
(99.997%) of water entering the sampling train at the surface at 
the time of the first sample collection at MW01 originated 
directly from the surrounding formation (i.e., no stagnant 
casing water) (Figure SI E6). MW02 was a low flow monitoring 
well. The cause of low flow is unknown but could be due to 
several factors, including low relative aqueous permeability due 
to gas flow or insufficient removal of drilling mud during well 
development. During the Phase V sampling event, MW02 was 
repeatedly purged over a 6-day period to ensure that sampled

47

RESULTS AND DISCUSSION
Groundwater Resources in the Pavillion Area. The

Wind River and Fort Union Formations are variably saturated 
fluvial depositional systems characterized by shale and fine-, 
medium-, and coarse-grained sandstone sequences. Lithology is 
highly variable and difficult to correlate from borehole data. No 
laterally continuous confining layers of shale exist below the 
maximum depth of groundwater use to retard upward solute 
migration. A comprehensive review of regional and local 
geology, including a lithologic cross-section in the vicinity of 
MW01 and MW02 (Figure SI A4), is provided in SI Sections 
A.1—A.6.

Domestic wells in the Pavillion area draw water from the 
Wind River Formation—a major aquifer system in the 
WRB.
groundwater exists under unconfined conditions.50 Below this 
depth, groundwater is present in lenticular, discontinuous, 
confined sandstone units with water levels above hydrostatic 
pressure, and in some instances flowing to the surface, 
indicating the presence of strong localized upward gradients. 
The majority of documented domestic well completions in 
Fremont County51 and five municipal wells in the Town of 
Pavillion52 west of the Field are completed in the Wind River 
Formation.

Flow to the surface was observed in a domestic well during 
the Phase II sampling event,6 and as mentioned, at four 
production wells during bradenhead testing in 2012. While the 
overall vertical groundwater gradient in the Pavillion Field is 
downward, these observations indicate that localized upward 
hydraulic gradients exist in the Field, which is relevant to 
potential upward solute migration from depths of production 
well stimulation. The deepest domestic wells in the Pavillion 
Field and immediate surrounding area are 229 and 322 m bgs, 
respectively (Table SI B1). Two municipal wells were 
proposed, but not drilled, in the Pavillion Field as replacement 
water for domestic wells at depths of 305 m bgs,52 similar to the 
depth of MW02 installed by EPA.

Major ion concentrations of domestic wells in the Pavillion 
field (summarized in Table SI B2) are typical of the Wind River 
Indian Reservation (WRIR),48 west of the Pavillion Field, and

48,49 From the surface to approximately 30 m bgs,

48,50,51
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Figure 2. (a) Elevation in absolute mean seal level (AMSL) and approximate depth below ground surface of documented acid and hydraulic 
fracturing stimulation stages. (b) Cumulative distribution of stimulation stages as a function of depth below deepest groundwater use in the Pavillion 
Field. Documentation of stimulation stages is absent at a number of production wells so that numbers presented here are a lower bound.

in Fremont County,51 where the Pavillion Field lies, (Table 1) 
with TDS levels <5000 mg/L. TDS concentrations in the Wind 
River Formation appear to vary with lithology rather than depth 
(white coarse sandstone associated with lower TDS values). 
There are no apparent trends in TDS levels with depth from 
data sets from the WRIR,53 Fremont County,51 and domestic 
wells in and around the Pavillion Field.

The Fort Union Formation is not used for water supply in 
the Pavillion area. However, the formation is highly productive 
and permeable where fractured49 with TDS values from 1000 to 
5000 mg/L.54 An aquifer exemption was obtained to enable 
disposal of produced water in a disposal well perforated in the 
Fort Union Formation55 at a location 5.6 km northwest of the 
Pavillion Field. Use of this well was suspended due to failure of 
well casing. Thus, the Wind River and Fort Union Formations 
in the Pavillion Field meet the regulatory definition of USDWs, 
as explicitly stated by EPA,9,55 and of usable water as defined by 
the BLM.

Well Stimulation Depths, Treatments, and Chemical 
Additives. Exploration of oil and gas in the Pavillion Field 
commenced in August 1953 with increasingly shallow 
stimulations through time (Figure 2). The first acid stimulation 
and hydraulic fracturing stages (injection over one or more 
discrete intervals) occurred in June 1960 and October 1964, 
respectively. Acid stimulation ceased in 2001. To date, the last 
stimulation stage (hydraulic fracturing) occurred in April 2007. 
Most production wells were completed and stimulated during 
several periods of increased activity, especially after 1997

(Figure 2a). Acid stimulation and hydraulic fracturing occurred 
as shallowly as 213 and 322 m bgs, respectively, at depths 
comparable to deepest domestic groundwater use in the area 
(Figure 2a). Approximately 10% of stimulation stages were 
<250 m of deepest domestic groundwater use whereas 
approximately 50% of stimulation stages were <600 m and 
80% were <1 km of deepest domestic groundwater use (Figure 
2b).

52

Surface casing of production wells—the primary line of 
defense to protect groundwater during conventional and 
unconventional oil and gas extraction—is relatively shallow in 
the Pavillion field with a median depth of 185 m bgs (i.e., 
shallower than the deepest groundwater use) and range of 
100-706 m bgs (Figure SI C1). There is no primary cement 
below surface casing, often for hundreds of meters, for 55 of 
106 (~52%) production wells for which cement bond logs are 
available (Table SI C1, Figure SI CI). There is currently no 
requirement in Wyoming for placement of primary cement to 
surface casing or to ground surface.

Instantaneous shut in pressures (ISIP) (wellhead gauge 
pressure immediately following fracture treatment) were similar 
for acid stimulation and hydraulic fracturing (Figure SI C2) 
suggesting that both matrix acidizing and acid fracturing (no 
proppants used56) occurred in the Pavillion Field. Acidizing 
solutions used in the Pavillion Field typically consisted of a 
7.5% or 15% hydrochloric acid solution plus additives described 
in well completion reports as inhibitors, surfactants, diverters, 
iron sequestration agents, mutual solvents, and clay stabilizers.

45
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Figure 3. Box and whisker plots of minimum and maximum, quartiles, median (line in boxes), mean (crosses in boxes) of (a) Na, (b) K, (c) Cl, (d) 
SO4 for domestic wells inventoried by Daddow

and WDEQ45 (PGDWXX series) greater than and less than 1 km from a production well, Wyoming Water Development 
Commission52 (WWDC series) greater than 1 km from a production well, EPA monitoring wells
and bradenhead water samples (Table SI D1). Domestic wells sampled more than once, including data from Daddow,53 are represented with a mean 
value. Fourteen measurements in Daddow 
during Phase III, IV, and V sample events.

48,53 and Plafcan51 in the Wind River Indian Reservation and Fremont County, respectively, sampled
6,8,9,39by EPA

9,39 (Tables SI E2b, SI E3b), and produced water

53 1 mg/L for potassium are not illustrated. Data points at MW01 and MW02 are samples collected<

Gelled fracture fluids were used extensively with CO2 foam 
(Table SI C4). Between 2001 and 2005, “WF-125” was used 
with CO2 foam (often with a 6% KCl solution) for hydraulic 
fracturing (Table SI C5). A stimulation report (one of only 
three publicly available throughout the operating history of the 
Field) and MSDSs indicate that WF-125 contained diesel fuel 
#2, 2-butoxyethanol, isopropanol, ethoxylated linear alcohols, 
ethanol, and methanol. During 2001, WF-125 and unidentified 
product mixtures were used with a 6% KCl and a 10% methanol 
solution and CO2 foam for hydraulic fracturing followed with a 
6% KCl and 10% methanol solution flush. Other WF-series 
compound mixtures of unknown composition were also used 
with CO2 foam and in some cases with N2 gas. Methanol, 
isopropanol, glycols, and 2-butoxyethanol were used in foaming 
agents (Table SI C3). Ethoxylated linear alcohols, isopropanol, 
methanol, 2-butoxyethanol, heavy aromatic petroleum naptha, 
naphthalene, and 1,2,4-trimethylbenzene were used in 
surfactants (Table SI C3). Slickwater (commonly with a 6% 
KCl solution) was used for hydraulic fracturing with and 
without CO2 foam in 2004 and 2005, respectively (Table SI 
C6).

Acidizing solutions were often flushed with a 2, 4, or 6% 
potassium chloride (KCl) solution. Pad acid, to initiate 
fractures, contained 10-50% heavy aromatic petroleum naptha. 
Corrosion inhibitors contained isopropanol and propargyl 
alcohol. Clay stabilizers contained methanol. Musol solvents 
used for acid stimulation consisted of 60-100% 2-butoxyetha­
nol and 10-30% oxylated alcohol (Table SI C3).

Prior to 1999, “salt solutions” were commonly used for 
hydraulic fracturing. After 1999, a 6% KCl solution was used 
extensively for hydraulic fracturing often combined with CO 
foam, with subsequent flushing using a 6% KCl solution. There 
were reported losses of KCl solutions during stimulation (e.g., 
at Tribal Pavillion 12-13 “lost thousands of bbls KCl”). 
Undiluted diesel fuel was used for hydraulic fracturing at three 
production wells before 1985. From the mid-1970s through 
2007, there was widespread use of gelled fracture fluids (gelled 
water, linear gel, and cross-linked gel). Diesel fuel #2 was used 
for liquid gel concentrates (Table SI C3). Ammonium chloride, 
potassium hydroxide, potassium metaborate, and a zirconium 
complex were used as cross-linkers.

2
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48,53 Fremont County,51 and domestic wells in andAt least 41.5 million liters (or ~11 million gallons) of fluid 
was used for well stimulation in the Pavillion Field (calculated 
from Table SI C2). Given lack of information at numerous 
production wells, this is an underestimate of actual cumulative 
stimulation volume. The cumulative volume of well stimulation 
in closely spaced vertical wells in the Pavillion Field is 
characteristic of high volume hydraulic fracturing in shale 
units.57 In evaluating solute attenuation in USDWs, EPA4 did 
not consider cumulative volumes of injection of well 
stimulation fluids in closely spaced vertical production wells 
common to CBM and tight gas production.

Evaluation of Impact to USDWs and Usable Water. In 
the Pavillion Field, impact to USDWs and usable waters 
depends upon the advective-dispersive solute transport of 
compounds (or their degradation products) used for well 
stimulation to water-bearing units (sandstone units at or near 
water saturation). Water-bearing units exist throughout the 
Wind River and Fort Union Formations in the Pavillion Field.

the WRIR,
around the Pavillion Field which were representative of the 
Wind River Formation regardless of distance from production 
wells (Table 1, Figure 3). Using combined data sets in and 
around the Pavillion Field, and the nonparametric Mann- 
Whitney test (null hypothesis that two sample sets come from 
the same population), sodium, potassium, and chloride 
concentrations were higher and sulfate concentrations lower 
in produced water compared to concentrations expected in the 
Wind River Formation (p = 6.6 X 10-19, 2.1 X 10-15, 2.6 X 
10-16, and 4.4 X 10-19, respectively), providing direct evidence 
of impact to USDWs at depths of stimulation. Also, potassium 
increased with calcium concentrations and sulfate increased
with TDS concentrations, respectively, in domestic wells but 
not in production wells (Figures SI D1). Chloride is a major 
component of TDS concentrations in production wells. 
Potassium/calcium and chloride/sulfate concentration ratios 
were higher in production wells than in domestic wells (Figures 
SI D2), further indicating anomalous potassium, chloride, and 
sulfate concentrations in production wells.

Produced water samples were collected from gas-water 
separators at four production wells and analyzed for organic 
compounds (Table SI D3, Figure SI D3) during the Phase II 
sampling event.6 Samples from one production well appeared 
to be from both an aqueous and an apparent nonaqueous phase 
liquid with the latter exhibiting thousands of mg/L of benzene, 
toluene, ethylbenzene, xylenes (BTEX). Synthetic organic 
compounds methylene chloride and triethylene glycol (TEG) 
were detected in produced water samples at 0.51 and 17.8 mg/ 
L, respectively indicating anthropogenic origin. Methylene 
chloride has been detected in flowback water in other 

including 122 domestic wells above the Barnett 
and in air sampled near well sites.66

Sample Results at MW01 and MW02. Concentrations of 
potassium in MW01 and MW02 were higher than expected 
values in the Wind River Formation (Figure 3) at p-values of 
2.6 X 10 
standard units) 
monitoring wells (Tables SI E3b, SI E4b, Figures SI E5, SI 
E6, SI E7), indicating that elevated potassium concentrations 
may have been attributable to release of potassium from 
potassium oxides and sulfates during curing of cement67-71 
used for monitoring well construction. However, a number of 
observations were inconsistent with cement interaction as a 
causative factor for elevated pH, and there was extensive use of 
compounds containing potassium including potassium hydrox­
ide during stimulation (Table SI C3). Water in contact with 
hydrating cement is saturated or oversaturated to portlandite
(Ca(OH2)) -
tion or carbonation.
wells was highly undersaturated to portlandite. Elevated pH in 
monitoring wells was not observed during monitoring well 
development until natural gas intrusion occurred in the wells, 
suggesting degassing as a possible cause of elevated pH (SI 
Section E.5). Also, potassium was detected at a concentration 
of 6000 mg/L in a bradenhead water sample having a pH of 
10.86 standard units from Tribal Pavillion 13-1 (Table SI D1). 
This may indicate either high potassium concentration at 
depths below EPA monitoring wells due to well stimulation 
(water from bradenhead samples originated at some unknown 
distance above cement outside production casing at each 
production well) or interaction of bradenhead water with 
wellbore cement.

For instance, production well Unit 41X-10 was recommended 
for plugging and abandonment in 1980 because of “problems 
with water production and casing failure.” In 1980, drilling logs 
at Tribal Pavillion 14-2 stated “Hit water flow while drilling at 
4105-4109 ft” bgs. The magnitude of produced water 
production in the Pavillion Field is variable with some wells 
having high produced water production (e.g., 17.9 million liters 
~4.7 million gallons at Tribal Pavillion 23-10 from July 2000 
to present) (Table SI C2). In some cases, stimulation fluids 
were injected directly into water bearing units. For instance, at 
Tribal Pavillion 14-1, a cast iron bridge plug was used to stop 
water production in 1993 from an interval where hydraulic 
fracturing occurred using undiluted diesel fuel in 1964 (Table 
SI C2).

The migration of stimulation fluid to water-bearing sand­
stone units in the Pavillion Field also likely occurred during 
fracture propagation and subsequent leakoff (loss of fluid into a 
formation in or near the target stratum). Leakoff increases in 
complex fracture networks as a result of lithologic variation over 
short distances and contact of stimulation fluid with permeable

58-61

64systems, 
Shale TX,65

and 1.2 X 10 06, respectively. High pH values (>11 
were observed during purging at both

-13

expected during hydraulic fracturing in fluvialstrata
depositional environments of the Wind River and Fort Union 
Formations. Leakoff can remove much or most of the fracturing 
fluid even for moderate sized induced fractures.58,59 Maximum
ISIP values for acid stimulation and hydraulic fracturing were 
19.5 and 40.1 MPa (Figure SI C2), respectively, equivalent to 
~2000 and ~4100 m of hydraulic head. Pressure buildup 
during hydraulic fracturing far in excess of drawdown expected 
during produced water extraction makes full recovery of
stimulation fluids unlikely.4,62

The migration of stimulation fluids to water-bearing units 
also likely occurred as a result of loss of zonal isolation during 
well stimulation (SI Section D.1). Casing failure occurred at 
five production wells following well stimulation. Cement 
squeezes were performed above primary cement often days 
after hydraulic fracturing without explanation63 at six 
production wells, potentially because of migration of 
stimulation fluid above primary cement. At one production 
well, stimulation fluid was injected just 4 m below an interval 
lacking cement outside of the production casing with a 
stimulation pressure of only 1.3 MPa indicating potential 
entry into the annular space.

Major ion concentrations in produced water sampled after 
stimulation (Table SI D1) were distinct from values expected in 
the Wind River Formation as evidenced by sample data from

72-74 and remains oversaturated prior to degrada- 
In contrast, water from monitoring75-78
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Figure 4. Summary of organic compounds detected by EPA in MW01 and MW02 during Phase III, IV, and V sampling events. Glycols, alcohols, and 
low molecular weight organic acids were not analyzed in Phase III. Alkylphenols and methanol (GC-FID method) were only analyzed in Phase V. 
Organic compounds detections for MW01 and MW02 are summarized in Table SI E3a and Table SI E4a, respectively.

(Table SI D2) and water from MW02, is necessary to attribute 
detection of BTEX to well stimulation.

1,3,5-, 1,2,4-, and 1,2,3-Trimethylbenzene were detected at 
maximum concentrations of 71.4, 148, and 45.8 pg/L, 
respectively in MW02 and at an order of magnitude lower 
concentrations in MW01. Naphthalene, methylnaphthalenes, 
and alkylbenzenes were also detected in MW02 at concen­
trations up to 7.9, 10.2, and 21.2 pg/L, respectively. Similar to 
BTEX compounds, detection of trimethylbenzenes, alkylben- 
zenes, and naphthalenes could in principle reflect non- 
anthropogenic origin but natural gas from the Pavillion Field 
and in EPA monitoring wells is “dry” (ratio of methane to 
methane through pentane concentration >0.95) (SI Section 
A.2, Table SI E5). Also, oil production in the vicinity of 
monitoring wells is very low or zero especially in the vicinity of 
MW02 (Table SI C2, Figure SI A5). Thus, the detection of 
higher molecular weight hydrocarbons in groundwater is 
unexpected. Trimethylbenzenes and naphthalenes were present 
in mixtures used for well stimulation (Table SI C3).

Other organic compounds used extensively for well 
stimulation were detected in MW01 and MW02 (Figure 4). 
Methanol, ethanol, and isopropanol were detected in 
monitoring wells at up to 863, 28.4, and 862 pg/L, respectively 
(Figure 4). Tert-butyl alcohol (TBA) was detected at 6120 pg/ 
L in MW02. Detection of TBA in groundwater has been 
associated with degradation of tert-butyl hydroperoxide used for 
hydraulic fracturing.79 Another potential source of TBA is 
degradation of methyl tert-butyl ether (MTBE) associated with
diesel fuel.80-84

Diethylene glycol (DEG) and TEG were detected in both 
monitoring wells at maximum concentrations of 226 and 12.7 
pg/L, respectively, in MW01, and at 1570 and 310 pg/L 
respectively, in MW02 (Figure 4). Tetraethylene glycol was 
detected only in MW02 at 27.2 pg/L. MSDSs indicate that

The median chloride concentration at MW02 was 469 mg/L 
(Figure 3), well above expected values in the Wind River 
Formation (p = 7.0 X 10-07). Compounds containing chlorides 
(e.g., KCl solutions) were used extensively for stimulation in 
the Pavillion Field. Sulfate concentrations in MW02 were below 
expected values in the Wind River Formation (p = 2.7 X 10-07) 
and not dissimilar (p = 0.40) to produced water concentrations. 
The Cl/SO4 concentration ratio was similar to produced water 
(Figure SI D2) at MW02. Chloride and sulfate concentrations 
in MW01 were more typical of the Wind River Formation 
which may be due variation in well stimulation practices both 
spatially and over time.

Concentrations of organic compounds detected in MW01 
and MW02 are summarized in Tables SI E3a, SI E4a and Figure 
4. Diesel range organics (DRO) and gasoline range organics 
(GRO) were detected in MW01 and MW02 with maximum 
DRO concentrations of 924 and 4200 pg/L, respectively and 
GRO concentrations of 760 and 5290 pg/L, respectively. 
Benzene, toluene, ethylbenzene, m,p-xylenes, and o-xylene were 
detected in MW02 at maximum concentrations of 247, 677, 
101, 973, and 253 pg/L, respectively, but were not detected at 
MW01. The maximum contaminant level (MCL) of benzene is 
5 pg/L, so the observed maximum value was 50 times higher 
than the MCL. Nondetection of BTEX at MW01 is surprising 
given that the well was gas-charged (foaming during sampling, 
Figure SI E9) with similar light hydrocarbon composition to 
MW02 (Table SI E5). Nondetection of BTEX may be due to 
increased dispersion and biodegradation of these compounds at 
the shallower depth of this well. We could find no published 
information on BTEX compounds in groundwater at 
concentrations detected in MW02 occurring above a gas field 
in the absence of well stimulation. However, further testing, 
such as compound specific isotope analysis of BTEX 
components present in natural gas from the Pavillion Field
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DEG was used for well stimulation. Use of TEG was not formate were detected in flowback water from two different 
fracturing sites in Germany with investigators concluding that 
these compounds were likely of anthropogenic origin resultin 
from degradation of polymers used in the fracturing fluid. 
Formate and acetate are also degradation products of 
methylene chloride.103 Benzoic acid, a degradation product of 
aromatics, was also detected in both monitoring wells at a 
maximum concentration of 513 pg/L.

Phenols were detected in both monitoring wells with 
maximum concentrations of phenol, 2-methylphenol, 3&4- 
methylphenol, and 2,4-dimethylphenol at MW02 at 32.7, 22.2, 
39.8, and 46.3 pg/L, respectively. Ketones were also detected in 
both monitoring wells with maximum concentrations of 
acetone, 2-butanone (MEK), and 4-methyl-2-pentanone 
(MIBK) at MW02 at 1460, 208, and 12.5 pg/L, respectively. 
Acetone, MEK, phenol, 2-methylphenol, 3&4 methylphenol, 
and 2,4-dimethylphenol were detected in produced water from 
the Denver-Julesburg Basin.101 MIBK, MEK, and acetone may 
result from microbial degradation of biopolymers used for 
hydraulic fracturing.101 Nonylphenol and octylphenol, com­
monly present in mixtures of ethoxlyated alcohols, were 
detected in both monitoring wells with maximum concen­
trations at MW02 at 28 and 2.9 pg/L, respectively. Ethoxlyated 
alcohols were used for well stimulation in the Pavillion Field.

Detection of organic compounds, especially those that 
cannot be attributed to cement, and degradation products of 
compounds known to have been used for production well 
stimulation in both MW01 and MW02 provide additional 
evidence of impact to USDWs and indicate upward solute 
migration to depths of current groundwater use. Installation of 
additional monitoring wells at depths similar to MW02, with 
sample analysis supplemented by state-of-the-art analytical 
methods better suited to detection of compounds present in

specified. Polar organic compounds, includin-g DEG, are 
commonly used as cement grinding agents.85-88 DEG and 
TEG have been detected in leachate from cured cement 
samples under static (no flow) conditions.89 Similar to elevated 
potassium detection, it is possible that detection of glycols 
could be attributable to cement used for monitoring well 
construction. However, mass flux scenario modeling, com­
monly used to evaluate potential concentrations of exposure of 
compounds released from materials in contact with drinking 
water under dynamic (flowing) conditions,90 was conducted on 
MW01 (SI Section E.7) indicating unlikely impact. The 
relevance of dynamic testing is corroborated by the observation 
that detection of DEG and TEG was limited to a water sample 
from a gas production well91 with nondetection in water 
samples from 83 domestic wells at five retrospective study 
sites

10

79,91-94 using high performance liquid chromatography 
with dual mass spectrometry at a reporting limit 5 pg/L in 
EPA's national study on hydraulic fracturing. 2-Butoxyethanol, 
a glycol ether used extensively for well stimulation in the 
Pavillion Field (Table SI C3), was detected in both monitoring 
wells at a maximum concentration of 12.7 pg/L. 2- 
Butoxyethanol was not detected in leachate from cured

89cement. .
The low molecular weight organic acids (LMWOAs) lactate, 

formate, acetate, and propionate were detected in both 
monitoring wells at maximum concentrations of 253, 584, 
8050, and 844 pg/L, respectively (Figure 4). LMWOAs 
anaerobic degradation products associated with hydrocarbon 
contamination in groundwater.95,96 Acetate has been detected 
in produced water,
flowback water from the Marcellus Shale,100 and in produced 
water from the Denver-Julesburg Basin, CO.101 Acetate and

are

97-99 in impoundments used to hold
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stimulation fluids (e.g., liquid chromatography coupled with
quadrupole time-of-flight mass spectrometry104-106
sary to evaluate long-term risk to domestic well users in the 
Pavillion Field.

Assessment of Potential Impact of Unlined Pits to 
Domestic Wells. EPA7 previously reported disposal of diesel 
fuel-based (invert) drilling mud and production fluids (flow- 
back, condensate, produced water) in unlined pits in the 
Pavillion Field and resultant groundwater contamination in 
surficial Quaternary deposits in shallow monitoring wells 
sampled by EPA in the vicinity of three unlined pits but did 
not document the extent of these disposal practices. At least 64 
unlined pits were used for disposal of drilling fluids of which 
invert mud was disposed in 57 pits consisting of up to 79% 
diesel fuel (Tables SI F1, SI F2). As many as 44 of 64 unlined 
pits were used or likely used for disposal of production fluids. 
Unlined pits were emptied and closed in 1995.

A summary of information available on disposal of drilling 
and production fluids in pits is provided in Table SI F2. This 
summary includes results of soil and groundwater sampling, 
excavation volumes and associated criteria (1000-8500 mg/kg 
total petroleum hydrocarbons), proximity and direction of 
unlined pits to domestic wells, and recommendations by 
WOGCC44 for further investigation (or no investigation).

The field operator has collected groundwater samples in 
surficial Quaternary deposits at 12 unlined pit locations.44 The 
highest reported concentrations of GRO and DRO were 91 000 
and 78 000 pg/L, respectively (Figure 5, Table SI F2). Benzene, 
toluene, ethylbenzene, and xylenes were detected at five 
locations at concentrations up to 1960, 250, 240, and 1200 
pg/l, respectively (Table SI F2). Thus, sample results indicate 
impact to surficial groundwater in Quaternary deposits.

There may be as many as 48 domestic wells within 600 m of 
unlined pits of which 22 domestic wells were sampled by 
EPA
DRO concentrations in domestic wells <600 m from unlined 
pits likely receiving production fluids were elevated (p = 0.003) 
compared to domestic wells >600 m from unlined pits (Figure 
5a). DRO was detected at 752 mg/kg in a reverse osmosis filter 
sample from a domestic well (PGDW20) during the Phase II 
sampling event8 (Table SI F3). Concentrations of DRO in 
domestic wells generally decreased with depth (Figure 5b). 
Another potential source of DRO in some domestic wells 
(Table SI G1) is invert mud remaining in boreholes. However, 
differentiation from other source terms (unlined pits and 
stimulation) is not possible with currently available data (SI 
Section G.1).

At two domestic wells (PGDW05 and PGDW30), chromato­
grams for DRO analysis suggest a diesel fuel source (Figure SI 
F1a, b). Chromatograms of aqueous (Figure SI F2a) and 
carbon trap samples (Figure SI F2b) for DRO at another 
domestic well (PGDW20) indicated the presence of heavy 
hydrocarbons in water. All three domestic wells are located near 
unlined pits likely used for disposal of production fluids.

Adamantanes were detected at low aqueous concentrations 
(<5 pg/L) at four domestic wells (PGDW05, PGDW20, 
PGDW30, and PGDW32) (Table SI F3). Admantane, 2-methyl 
adamantane, and 1,3-dimethyladamantane were detected in a 
reverse osmosis filter sample at PGDW20 at concentrations of 
420, 9400, and 2960 pg/kg, respectively. Adamantanes were 
detected in produced water up to 74 mg/L (Table SI D3) 
indicating disposal in unlined pits as a potential source term. 
The inherent molecular stability of admantanes and other

diamondoid compounds imparts thermal stability resulting in 
enrichment in manufactured petroleum distillates. 
oids are resistant to biodegradation 
as a fingerprinting tool to characterize petroleum and 
condensate induced groundwater contamination.112

2-Butoxyethanol was detected at 3300 pg/L in a domestic 
well (PGDW33)45 (Table SI F3). The depth of this domestic 
well is only 9.1 m bgs and is located within 134 m of an unlined 
pit used for disposal of production fluids. Other compounds, 
including BTEX, associated with production well stimulation 
(e.g., isopropanol) were detected at lower concentrations (<10 
pg/L) in other domestic wells (Table SI F3). Sample results at 
domestic wells suggest impact from unlined pits and the 
immediate need for further investigation including installation 
of monitoring wells in the Wind River Formation. Since flood 
irrigation is common in the vicinity of unlined pit areas, the 
lateral extent of groundwater contamination is potentially 
greater in the Wind River Formation than in overlying surficial 
Quaternary deposits due to “plume diving” (i.e., uncontami­
nated water overlies portions of a contaminant plume).

Our investigation highlights several important issues related 
to impact to groundwater from unconventional oil and gas 
extraction. We have, for the first time, demonstrated impact to 
USDWs as a result of hydraulic fracturing. Given the high 
frequency of injection of stimulation fluids into USDWs to 
support CBM extraction and unknown frequency in tight gas 
formations, it is unlikely that impact to USDWs is limited to the 
Pavillion Field requiring investigation elsewhere.

Second, well stimulation in the Pavillion Field occurred many 
times less than 500 m from ground surface and, in some cases, 
at or very close to depths of deepest domestic groundwater use 
in the area. Shallow hydraulic fracturing poses greater risks than 

57,116 especially in the presence of well 
as documented here in the Pavillion Field.

109), is neces- Diamond-
110,111 resulting in their use

107,108

113-115

deeper fracturing does,
117,118integrity issues 

Additional investigations elsewhere are needed.
Finally, while disposal of production fluids in unlined pits is a 

legacy issue in Wyoming, this practice has nevertheless caused 
enduring groundwater contamination in the Pavillion Field. 
Impact to groundwater from unlined pits is unlikely to have 
occurred only in the Pavillion Field, necessitating investigation 
elsewhere.

6,8,9,39 and 11 were resampled by WDEQ45 (Table SI F3).
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